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Abstract. We investigate the network model of community by Watts, Dodds and Newman (D.J. Watts
et al., Science 296, 1302 (2002)) as a hierarchy of groups, each of 5 individuals. A homophily parameter
α controls the probability proportional to exp(−αx) of selection of neighbours against distance x. The
network nodes are endowed with spin-like variables si = ±1, with Ising interaction J > 0. The Glauber
dynamics is used to investigate the order-disorder transition. The transition temperature Tc is close to 3.8
for α < 0.0 and it falls down to zero above this value. The result provides a mathematical illustration of
the social ability to a collective action via weak ties, as discussed by Granovetter in 1973.

PACS. 89.65.-s Social and economic systems – 61.43.-j Disordered solids

1 Introduction

To investigate the human society is more than necessary.
However, the subject is probably the most complex sys-
tem we can imagine, whatever the definition of complexity
could be. A cooperation between the sociology and other
sciences — including the statistical physics — can be fruit-
ful for our understanding of what is going around us. The
science of social networks seems to be a rewarding field
for this activity [1–4]. Although the physicists were not
inventors of basic ideas here, their empirical experience
can be useful at least for the mathematical modelling in
social sciences. Moreover, it seems that purely physical
concepts like phase transitions can provide a parallel and
complementary description of phenomena observed by the
sociologists. Such a description is also a motivation for
this research. Our aim is to investigate the social ability
to organize, as a function of the topology of a social ties
network.

As it was stated by Granovetter [5] more than thirty
years ago, the structure of social ties can be a formal deter-
minant in an explanation of the activity of a given com-
munity. Granovetter wrote: “Imagine (...) a community
completely partitioned into cliques, such that each person
is tied to every other in his clique and to none outside.
Community organisation would be severely inhibited” ([5],
p. 1373). As an example, the author provides “the Ital-
ian community of Boston’s West End (...) unable to even
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form an organisation to fight against the urban revolution
which ultimately destroyed it”. Granovetter argued that
new information is transported mainly via distant connec-
tions (weak ties) between the cliques, and not within the
cliques.

This compact description of a cliquey structure of a so-
cial network found recently a mathematical realisation [6].
There, the level of cliqueness was controlled along the fol-
lowing receipt. Initially, the community of N individuals
is virtually divided into N/g small groups of g individuals
each. These groups form the bottom level of a hierarchi-
cal structure defining the distances xij between individu-
als i, j = 1, ..., N as x = 1 between the individuals in the
same group, x = 2 between the members of neighbour-
ing groups, x = 4 between the members of groups which
form neighbouring groups and so on. A schematic view is
shown in Figure 1. The virtual distances xij are used to
determine real links (the social ties) between the network
nodes (individuals). Namely, for each node i its links to
other nodes j are drawn randomly, with the probability
of a link between two nodes i and j depending on the dis-
tance xij as pij ∝ exp(−αxij). The procedure is repeated
until a given number of neighbours z = g−1 on average is
assured. In reference [6], the nodes were connected accord-
ing to a set of a few of mutually intertwined hierarchies.
Here we follow the original picture [5], where only one hi-
erarchy is present. This choice is determined by our aim
to consider only ties due to one kind of activity, namely
the political one. This activity leads to the social ability
to organize, which is our interest in this work.

The topology of the network is controlled by the pa-
rameter α, called a homophily parameter in reference [6].
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Fig. 1. A schematic view of the system for g = 5.

For α = − ln(2) every node is selected with the same prob-
ability [6], then the system is just a random graph [7].
(For a short introduction to random graphs see for ex-
ample [8,9].) For α large and positive the links drawn re-
produce the initial virtual separation of the community
to small groups. For α large and negative, far nodes are
connected more likely. In Figure 2 we present a graphical
representation of the connectivity matrix for a small sys-
tem. Non-zero matrix elements are marked in black. As
we see, for α large and positive the only non-zero matrix
elements are close to the diagonal and in fact, the matrix
is decomposed into a set of submatrices of the same size.
This means that the system is split into a set of fully con-
nected subgraphs, mutually separated. For α = − ln(2)
the connectivity matrix is random, with 4 units in each
line on average. In this case, the graph is a random net-
work in the sense of reference [7]. For α large and negative
all links are placed between nodes which are distant in the
sense of remoteness in the hierarchy [6]. The whole con-
struction is exactly the same as in reference [6] for the case
of one hierarchy. We note that the system is not similar
to a linear chain. For α ≈ 0.7, i.e. at the edge of split-
ting, the system can be approximated by two fairly dense
clusters mutually connected by one or two links. These
links are due to the largest possible distance, and there-
fore their probability is the smallest. On the other hand,
we have checked that the number of isolated spins slightly
decreases with α. The hierarchical structure of the net-
work ensures the small world property, because the num-
ber of nodes is N = 5× 2l, where l is the number of levels
in the hierarchy, and the maximal distance is a linear func-
tion of l [6].

Here we add one more ingredient to the model. A spin
si is assigned to each node, and an interaction energy J
to each link. The binary approximation of opinions has
got some support in the threshold model of social be-
haviour [10]. The energy J is the same for each link, and
it favors the same sign of spins of neighbouring nodes. In
this way the social system is translated into a magnet with
the topology close to the one suggested by Granovetter.
As with a magnet, we can ask if any kind of a phase tran-
sition is possible [11–13] where the spins order below some
level of thermal noise to have mostly the same orientation.
This phase transition, if it is present in the magnetic sys-
tem, serves here as a parallel to measure the ability of the
social system to a collective action. Oppositely, a lack of
the transition can be interpreted as an indication that the
network cannot behave in a coordinated way. Using this
model, we do not state that the magnetic interaction is in
any sense similar to the interpersonal interaction. We only

α = 10

α = 0

α = - ln 2

α = -10

Fig. 2. Non-zero elements of the connectivity matrix for g = 5,
N = 80 α = 10.0, 0.0,− ln(2),−10.0, from top to bottom.

assume that an influence of the topology of the social ties
on the social collectivity can be reproduced to some extent
by the influence of the network topology on a collective
state, with the latter measured by a scalar spin variable.

We should add that the connection of magnetic phase
transitions to collective social phenomena is by no means
new. Several authors evaluated an influence of topology of
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Fig. 3. Amount of nodes nmax/N in the largest connected part
of network against the coefficient α. The result is an average
over 4 samples of 10 240 nodes. The error bars are marked. The
curve slightly increases near α ≈ 0.6, and sharply decreases
above α = 0.7, splitting into two clusters of approximately
equal sizes.

small-world and scale-free networks on the existence and
universality class of the ferro-paramagnetic phase transi-
tion of Ising spins, placed at the network nodes [14–18].
The authors of these papers (and presumably several oth-
ers) referred to the magnetic phase transition as to an
equivalent to collective social phenomena: the cultural
globalisation [15], the formation of cultural domains [16],
modelling of social opinion including mass-media [17] and
so on. Other references to the Ising spins on disordered
networks can be found e.g. in [9]. The list of authors who
considered models of the social network is much longer; in
fact, the subject is well established in sociology [19]. Also,
the binary state of an Ising spin make it a convenient
starting point to numerous applications in the game the-
ory, where the concepts of energy and temperature have
only indirect equivalents [20].

2 Calculations and results

The calculations are performed for networks of N nodes,
from N = 640 to 10 240. The time of calculation was 105

steps, all spins updated at one step. The obtained results
were averaged over last 5 × 104 steps.

As shown in Figure 2, the structure of the obtained
network depends on the parameter α. To capture the de-
tails of this dependence, we calculated numerically the
size nmax of the largest component of the network and the
clustering coefficient C against α. The results are shown
in Figures 3, 4. For our purposes, the properties of the net-
work are of interest mostly at the edge of its breaking into
pieces, where the ties connecting local groups are indeed
weak. We read from Figure 3 that this is the region where
0 < α < 0.7. The clustering coefficient Ci of node i is usu-
ally defined as the number of existing links between nodes
connected to i divided by the maximal possible number
of these links [9], whereas C is an average of Ci over all
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Fig. 4. The clustering coefficient C against the coefficient α.
The result is an average over 4 samples of 10 240 nodes. The
error bars are of size of the symbols used.
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Fig. 5. Magnetisation M against temperature T for some se-
lected values of α.

nodes. (Some subtleties of this definition are discussed in
Ref. [21]). As shown in Figure 4, the clustering coefficient
C increases in the above range of α from almost zero to
about 0.2.

In Figure 5 we show the thermal dependence of the
magnetisation for some values of α. These and other
results allow to calculate the critical temperature Tc

versus α — these results are shown in Figure 6. The
result for α = − ln(2) is approximately confirmed for
N = 106 nodes [22]. Moreover, in this case the structure
is equivalent to the Erdős–Rényi random network [23]. In
this case, the exact analytical solution [14] gives Tc = 3.91.
The dependence Tc(α) was calculated also for the network
sizes N = 2560 and 5120. The results indicate that the
obtained dependence falls down more sharply as N in-
creases. For α > 1.2 the time of calculations necessary
to get thermal equilibrium becomes very large and we
have no reliable results. However, it is clear that the crit-
ical temperature of small groups of g = 5 nodes is zero.
This supposition is supported by the numerical results of
the time of relaxation to equilibrium for these clusters,
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Fig. 6. The critical temperature Tc against the coefficient α.
The result is an average over 4 samples of 10 240 nodes. The
error bars are of size of the symbols used. The dotted line is a
guide to the eye.
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Fig. 7. The relaxation time τ for α = 10.0, for various system
sizes N . The line is τ = 0.5 exp(8/T ). The data were obtained
for N up to 25 × 104 nodes.

shown in Figure 7. The data obtained with this method
are marked with crosses in Figure 6.

3 Discussion

Our numerical results clearly indicate, that the critical
temperature of the system sharply decreases with the ho-
mophily parameter α. This result is easy to interpret when
we deal with the case of α > 0.7, when the network is di-
vided into parts. However, the critical temperature starts
to decrease already above α = 0, where the network is still
connected. This means that the links between separated
groups become too scarce to maintain the magnetic order-
ing. One can imagine a tree of small clusters almost fully
connected inside, but with only one or two links to other
clusters. The ability of such a system to show the long-
range magnetic ordering is not much larger than in the
case of one-dimensional chain of spins, where Tc = 0. In

this sense the weak ties between the clusters become too
weak when α > 0. We note that in our system, all links are
of the same strength. However, ‘weak ties’ in the sense of
Granovetter [5] mean not their strength, measured by e.g.
the intensity of contact, but rather their unique function
to provide contact between far groups, otherwise sepa-
rated. To refer again to the original text, “removal of the
average weak tie would do more “damage” to transmis-
sion probabilities than would that of the average strong
one” [5].

Assuming that the interpretation of the phase tran-
sition is sociologically meaningful, we can state that our
numerical result agrees with the qualitative prediction of
Granovetter, made in 1973. As long as the connections
between the small groups are too sparse, the system as
a whole does not show any collective behaviour. We note
that the number of links in the network does not vary with
the homophily parameter α. It is only their distribution
which changes the system behaviour. Obviously, we have
no arguments to defend particular elements of the model,
like the number of states of one node (which is two), or
the homogeneous character of the node-node interaction
(the same for each tie), or the tie symmetry (the same in
both directions) etc. All these model ingredients should
be treated as particular and they can vary from one ap-
proach to another. On the contrary, as we deduce from the
universality hypothesis, the phase transition itself does de-
pend on the number of components of the order parame-
ter [24]. The assumption on the Ising model is nontrivial,
but remains arbitrary. The argument is that the model is
the simplest known. It would be of interest to check our
results for more sophisticated descriptions of the social in-
teractions, as the models of Sznajd [25], Deffuant [26] or
Krause-Hegselmann [27].

Still there is a gap between the sociological description
of the structure of the social network and the global char-
acteristics used in the sociophysics. The former is much
more detailed and oriented to look for differences between
particular cases, whilst the second is theoretical and tends
to capture general features, neglecting details. An exam-
ple of the sociological approach is reference [28]; there,
homophily is found to enhance the so-called transitivity
in personal networks of strong ties. As the transitivity
can be measured by the clusterisation coefficient, refer-
ence [28] can be seen as a complementary to the paper of
Granovetter [5], which was the starting point of our study.

Concluding, it is not the critical value of the homophily
parameter α which is relevant for the sociological interpre-
tation, because this critical value depends on all the above
mentioned details. What is — or can be — of importance
is that this critical value exists. The task, how to model
a collective state in a social system, remains open. We
can imagine that exceeding the critical value of some pay-
out, common for a given community, could trigger off a
collective action, enhanced then by a mutual interaction.
Attempts of this kind of description, with the application
of the mean field theory, are classical in sociology [10] as
well as in sociophysics [29]. The result of the present work
assures that the effectiveness of such a social interaction
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depends on the topology of the social network. The same
approach can be applied — and was applied — to other
models of the social structure ([30–32]).

The work was partially supported by COST Action P-10
“Physics of Risk”.
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